If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+8=98
We move all terms to the left:
2w^2+8-(98)=0
We add all the numbers together, and all the variables
2w^2-90=0
a = 2; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·2·(-90)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*2}=\frac{0-12\sqrt{5}}{4} =-\frac{12\sqrt{5}}{4} =-3\sqrt{5} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*2}=\frac{0+12\sqrt{5}}{4} =\frac{12\sqrt{5}}{4} =3\sqrt{5} $
| 2v^2+9=-9v | | 12+x=9x | | 4v=0 | | -209=11x | | 2(2+x)=28 | | c+3/4=c-5/6 | | 6^3x=38 | | -15-n=-16 | | -116=-7x+3{-4x+12} | | 16=8(x | | 7=3-a | | a-(-1)=2 | | (y/2)^2=16 | | q/15=16 | | k-8=11,8 | | 2v^2+12v+16=0 | | 4y+2y=8 | | s/12=-6 | | {-6n=3},n=40 | | 2(x+10)+5x=7x-20 | | 32=-y/7 | | 4y=32y-18 | | 8k^2=9k-8 | | 282=-y+14 | | 285-x=221 | | (y^2/2)=16 | | x^2−13x+4=-6x-2 | | -u+277=164 | | 240+0.25x=450 | | 8k-4=2(k+7) | | 7.1*x=90 | | y^2/2=16 |